2363 words
12 minutes
CISCN2024-Crypto

经典差一点。。。难绷

image-20240519202858861

OvO#

题目:

点击展开代码
from Crypto.Util.number import *
from secret import flag
nbits = 512
p = getPrime(nbits)
q = getPrime(nbits)
n = p * q
phi = (p-1) * (q-1)
while True:
    kk = getPrime(128)
    rr = kk + 2
    e = 65537 + kk * p + rr * ((p+1) * (q+1)) + 1
    if gcd(e, phi) == 1:
        break
m = bytes_to_long(flag)
c = pow(m, e, n)

e = e >> 200 << 200
print(f'n = {n}')
print(f'e = {e}')
print(f'c = {c}')

"""
n = 111922722351752356094117957341697336848130397712588425954225300832977768690114834703654895285440684751636198779555891692340301590396539921700125219784729325979197290342352480495970455903120265334661588516182848933843212275742914269686197484648288073599387074325226321407600351615258973610780463417788580083967
e = 37059679294843322451875129178470872595128216054082068877693632035071251762179299783152435312052608685562859680569924924133175684413544051218945466380415013172416093939670064185752780945383069447693745538721548393982857225386614608359109463927663728739248286686902750649766277564516226052064304547032760477638585302695605907950461140971727150383104
c = 14999622534973796113769052025256345914577762432817016713135991450161695032250733213228587506601968633155119211807176051329626895125610484405486794783282214597165875393081405999090879096563311452831794796859427268724737377560053552626220191435015101496941337770496898383092414492348672126813183368337602023823
"""

题目有个关键信息:

e=65537+kkp+rr((p+1)(q+1))+1     (1)e = 65537 + kk * p + rr * ((p+1) * (q+1)) + 1~~~~~(1) rr=kk+2rr=kk+2

于是我们可以得到这样两个数:e//n=rr、 kk=rr2e//n=rr、~kk=rr-2

(1)(1)式可以转换成这样:

e=65537+kkp+rr((p+1)(n/p+1))+1e = 65537 + kk * p + rr * ((p+1) * (n/p+1)) + 1

所以我们可以得到这个方程:

ep=65538p+kkp2+rr((p+1)(n+p))e*p = 65538*p + kk * p^2 + rr * ((p+1) * (n+p))

最后我们直接去解这个方程就可以得到素数p,进而得到flag;这里用到了精度域RealField(1000),所以可以不用考虑small_roots()需要求几位(个人理解,仅供参考)

exp:

点击展开代码
# sage10.3
from Crypto.Util.number import *
def partial_p(p0, kbits, n):
    PR.<x> = PolynomialRing(Zmod(n))
    nbits = n.nbits()
    f = x + p0
    f = f.monic()

	roots = f.small_roots(X=2^(kbits), beta=0.4)

	if roots:
		x0 = int(roots[0])
		p = gcd(x0 + p0, n)
		return int(p)

def find_p(eh, kbits, n):
    P.<x> = PolynomialRing(RealField(1000))
    f = (65538+rr*(n+1))*x + (kk+ rr) * x**2 + rr * n - eh*x
    res = f.monic().roots()
    if res:
        for i in res:
            ph = int(i[0])

            # print(ph)

			p = partial_p(ph, kbits, n)
			if p and isPrime(p):
				return p

n = 111922722351752356094117957341697336848130397712588425954225300832977768690114834703654895285440684751636198779555891692340301590396539921700125219784729325979197290342352480495970455903120265334661588516182848933843212275742914269686197484648288073599387074325226321407600351615258973610780463417788580083967
e = 37059679294843322451875129178470872595128216054082068877693632035071251762179299783152435312052608685562859680569924924133175684413544051218945466380415013172416093939670064185752780945383069447693745538721548393982857225386614608359109463927663728739248286686902750649766277564516226052064304547032760477638585302695605907950461140971727150383104
c = 14999622534973796113769052025256345914577762432817016713135991450161695032250733213228587506601968633155119211807176051329626895125610484405486794783282214597165875393081405999090879096563311452831794796859427268724737377560053552626220191435015101496941337770496898383092414492348672126813183368337602023823
rr = e // n
kk = rr - 2
p = find_p(e, 200, n)
if p:
    q = n // p
    e = 65537 + kk * p + rr * ((p+1) * (q+1)) + 1
    d = inverse(e, (p-1)*(q-1))
    print(long_to_bytes(pow(c, d, n)))

# flag{b5f771c6-18df-49a9-9d6d-ee7804f5416c}

ezrsa(复现)#

题目:

点击展开代码
from Crypto.Util.number import *
from Crypto.PublicKey import RSA
import random
from secret import flag
m = bytes_to_long(flag)
key = RSA.generate(1024)
passphrase = str(random.randint(0,999999)).zfill(6).encode()
output = key.export_key(passphrase=passphrase).split(b'\n')
for i in range(7, 15):
    output[i] = b'*' * 64
with open("priv.pem", 'wb') as f:
    for line in output:
        f.write(line + b'\n')
"""
私钥文件
-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,435BF84C562FE793

9phAgeyjnJYZ6lgLYflgduBQjdX+V/Ph/fO8QB2ZubhBVOFJMHbwHbtgBaN3eGlh
WiEFEdQWoOFvpip0whr4r7aGOhavWhIfRjiqfQVcKZx4/f02W4pcWVYo9/p3otdD
ig+kofIR9Ky8o9vQk7H1eESNMdq3PPmvd7KTE98ZPqtIIrjbSsJ9XRL+gr5a91gH

****************************************************************

****************************************************************

****************************************************************

****************************************************************

****************************************************************

****************************************************************

****************************************************************

****************************************************************

hQds7ZdA9yv+yKUYv2e4de8RxX356wYq7r8paBHPXisOkGIVEBYNviMSIbgelkSI
jLQka+ZmC2YOgY/DgGJ82JmFG8mmYCcSooGL4ytVUY9dZa1khfhceg==
-----END RSA PRIVATE KEY-----
"""
with open("enc.txt", 'w') as f:
    f.write(str(key._encrypt(m)))
"""
密文 55149764057291700808946379593274733093556529902852874590948688362865310469901900909075397929997623185589518643636792828743516623112272635512151466304164301360740002369759704802706396320622342771513106879732891498365431042081036698760861996177532930798842690295051476263556258192509634233232717503575429327989
"""

题目给了私钥文件和密文,虽然私钥文件不完整,但也不是完全没有有用的信息;然而,这里的私钥文件进行了加密:

passphrase = str(random.randint(0,999999)).zfill(6).encode()
output = key.export_key(passphrase=passphrase).split(b'\n')

因为passphrase的范围是[0,999999],所以我们可以爆破去找passphrase;但我们还是需要看看加密代码。

翻一下export_key的源代码,发现加密的位置在这:

!image-20240519203812924

查看此处函数的源代码:

image-20240519203919740

对该函数的解释:

1,随机生成8bytes的salt

2,PBKDF1(passphrase, salt, 16, 1, MD5) 得到 key 在末尾并附上PBKDF1(key + passphrase, salt, 8, 1, MD5)(不理解函数的意思也没事,只要知道这里的key是这样的形式就行)

3,使用3DES进行CBC模式加密(key为第二步的key,iv为salt):

​ objenc = DES3.new(key, DES3.MODE_CBC, salt)

​ data = objenc.encrypt(pad(data, objenc.block_size))

"Proc-Type: 4,ENCRYPTED\nDEK-Info: DES-EDE3-CBC,%s\n\n" %tostr(hexlify(salt).upper()),可以知道私钥文件里的iv(salt)的值为435BF84C562FE793(这里可以看看前面的私钥文件)。

前面也提到passphrase可以进行爆破,于是我们可以通过 ”解密前半来判断解密是否成功“ 作为判断条件(比如开头应该是308202,e应该是010001,即65537)进行爆破:

点击展开代码```python from binascii import a2b_base64, unhexlify from Crypto.Hash import MD5 from Crypto.Cipher import DES3 from Crypto.Protocol.KDF import PBKDF1 import tqdm
from binascii import a2b_base64, unhexlify
from Crypto.Hash import MD5
from Crypto.Cipher import DES3
from Crypto.Protocol.KDF import PBKDF1
import tqdm
def solve(data, salt):
    # 爆破一下passphrase
    for i in tqdm.trange(1000000):
        passphrase = str(i).zfill(6).encode()
        # We only support 3DES for encryption
        key = PBKDF1(passphrase, salt, 16, 1, MD5)
        key += PBKDF1(key + passphrase, salt, 8, 1, MD5)
        objenc = DES3.new(key, DES3.MODE_CBC, salt)
        # Encrypt with PKCS#7 padding
        data1 = objenc.decrypt(data).hex()
        if data1[:6] == "308202" and "010001" in data1:
            print("", data1)
            iv = a2b_base64(b"hQds7ZdA9yv+yKUYv2e4de8RxX356wYq7r8paBHPXisOkGIVEBYNviMSIbgelkSIjLQka+ZmC2YOgY/DgGJ82JmFG8mmYCcSooGL4ytVUY9dZa1khfhceg==")[:8]
            objenc = DES3.new(key, DES3.MODE_CBC, iv)
            c1 = a2b_base64(b"hQds7ZdA9yv+yKUYv2e4de8RxX356wYq7r8paBHPXisOkGIVEBYNviMSIbgelkSIjLQka+ZmC2YOgY/DgGJ82JmFG8mmYCcSooGL4ytVUY9dZa1khfhceg==")
            data1 = objenc.decrypt(c1)[8:].hex()
            print(data1)
            return passphrase


salt = unhexlify("435BF84C562FE793")
c = a2b_base64(b"9phAgeyjnJYZ6lgLYflgduBQjdX+V/Ph/fO8QB2ZubhBVOFJMHbwHbtgBaN3eGlhWiEFEdQWoOFvpip0whr4r7aGOhavWhIfRjiqfQVcKZx4/f02W4pcWVYo9/p3otdDig+kofIR9Ky8o9vQk7H1eESNMdq3PPmvd7KTE98ZPqtIIrjbSsJ9XRL+gr5a91gH")
passphrase = solve(c, salt)
print(passphrase)
"""
48%|████████████████████████████████████████████████████████████████████████▊                                                                              | 482292/1000000 [00:33<00:35, 14407.19it/s] 

前半:
3082025c02010002818100a18f011bebacceda1c6812730b9e62720d3cbd6857af2cf8431860f5dc83c5520f242f3be7c9e96d7f96b41898ff000fdb7e43ef6f1e717b2b7900f35660a21d1b16b51849be97a0b0f7cbcf5cfe0f00370cce6193fefa1fed97b37bd367a673565162ce17b0225708c032961d175bbc2c829bf2e16eabc7e0881feca0975c810203010001

后半:
8f2363b340e502405f152c429871a7acdd28be1b643b4652800b88a3d23cc57477d75dd5555b635167616ef5c609d69ce3c2aedcb03b62f929bbcd891cadc0ba031ae6fec8a2116d0808080808080808

b'483584'
"""

然后稍微整理一下(不懂的话,可以在网上搜一下RSA私钥文件格式去试着自己拆解一下),可以得到这些信息:

n = 0x00a18f011bebacceda1c6812730b9e62720d3cbd6857af2cf8431860f5dc83c5520f242f3be7c9e96d7f96b41898ff000fdb7e43ef6f1e717b2b7900f35660a21d1b16b51849be97a0b0f7cbcf5cfe0f00370cce6193fefa1fed97b37bd367a673565162ce17b0225708c032961d175bbc2c829bf2e16eabc7e0881feca0975c81
e = 0x010001

dql = 0x8f2363b340e5
qp = 0x5f152c429871a7acdd28be1b643b4652800b88a3d23cc57477d75dd5555b635167616ef5c609d69ce3c2aedcb03b62f929bbcd891cadc0ba031ae6fec8a2116d

其中,这里dql只有48bit(因为CBC模式的特点,所以后半部分的前8个bytes我们是没法解密的)

而我们可以知道的是:

edq=1+k(q1) kq=edq+k1e*dq=1+k*(q-1)~\rightarrow k*q=edq+k-1 inv(q,p)q1 (mod p)inv(q,p)q10 (mod p)inv(q,p)*q\equiv1~(mod~p)\rightarrow inv(q,p)*q-1\equiv0~(mod~p)

不过这里有 kkqq 两个未知量,不过我们知道dql的值,所以我们有下面这样的方程(主要是为了减少要设的未知量):

X=kq=e(x+dql)+k1X=k*q=e(x+dql)+k-1 inv(q,p)(kq)2k(kq)=inv(q,p)X2kX0 (mod p)inv(q,p)*(k*q)^2-k*(k*q)=inv(q,p)*X^2-k*X\equiv0~(mod~p)

于是我们爆破k,解个copper就行(但比赛的时候调小了。。。问了Dexter师傅才知道得调大点才行)

exp:

点击展开代码```python from tqdm import * from Crypto.Util.number import * from Crypto.PublicKey import RSA from Crypto.Cipher import PKCS1_OAEP
from tqdm import *
from Crypto.Util.number import *
from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_OAEP
n = 0xa18f011bebacceda1c6812730b9e62720d3cbd6857af2cf8431860f5dc83c5520f242f3be7c9e96d7f96b41898ff000fdb7e43ef6f1e717b2b7900f35660a21d1b16b51849be97a0b0f7cbcf5cfe0f00370cce6193fefa1fed97b37bd367a673565162ce17b0225708c032961d175bbc2c829bf2e16eabc7e0881feca0975c81
e = 65537
dq_leak= 0x8f2363b340e5
inv = 0x5f152c429871a7acdd28be1b643b4652800b88a3d23cc57477d75dd5555b635167616ef5c609d69ce3c2aedcb03b62f929bbcd891cadc0ba031ae6fec8a2116d
c = 55149764057291700808946379593274733093556529902852874590948688362865310469901900909075397929997623185589518643636792828743516623112272635512151466304164301360740002369759704802706396320622342771513106879732891498365431042081036698760861996177532930798842690295051476263556258192509634233232717503575429327989

def coppersmith(k):
    R.<x> = PolynomialRing(Zmod(n))
    tmp = e * (x * 2^48 + dq_leak) + k - 1
    f = inv * tmp^2 - k*tmp
    f = f.monic()
    x0 = f.small_roots(X=2^464,beta=1,epsilon=0.09)
    return x0

for k in trange(1,e):
    x0 = coppersmith(k)
    if x0 != []:
        dq = int(x0[0]) * 2^48 + dq_leak
        q = (e*dq + k - 1) // k
        p = n // q
        d = inverse(e,(p-1)*(q-1))
        m = pow(c,d,n)
        print(long_to_bytes(int(m)))
        break
"""
73%|███████▎  | 47793/65536 [11:46<04:22, 67.62it/s]

b'flag{df4a4054-23eb-4ba4-be5e-15b247d7b819}'
"""

Hash(复现)#

题目:

点击展开代码```python #!/usr/bin/python2 # Python 2.7 (64-bit version) from secret import flag import os, binascii, hashlib key = os.urandom(7) print hash(key) print int(hashlib.sha384(binascii.hexlify(key)).hexdigest(), 16) ^ int(binascii.hexlify(flag), 16) """ 7457312583301101235 13903983817893117249931704406959869971132956255130487015289848690577655239262013033618370827749581909492660806312017 """ ``` ```python #!/usr/bin/python2 # Python 2.7 (64-bit version) from secret import flag import os, binascii, hashlib key = os.urandom(7) print hash(key) print int(hashlib.sha384(binascii.hexlify(key)).hexdigest(), 16) ^ int(binascii.hexlify(flag), 16) """ 7457312583301101235 13903983817893117249931704406959869971132956255130487015289848690577655239262013033618370827749581909492660806312017 """ ```

1,MITM#

题目使用了python2.7版本的hash()函数,所以查看一下源码),然后我们找到对应的hash代码(这里要注意——py2.7里,str和bytes不区分;所以在py2.7上,type(bytes型数据) 的返回值是str):

点击展开代码
def shash(value):
       """
       Returns a Python 2.7 hash for a string.

       Logic ported from the 2.7 Python branch: cpython/Objects/stringobject.c
       Method: static long string_hash(PyStringObject *a)

       Args:
           value: input string

       Returns:
           Python 2.7 hash
       """

       length = len(value)

       if length == 0:
           return 0

       mask = 0xffffffffffffffff
       x = (Hash.ordinal(value[0]) << 7) & mask
       for c in value:
           x = (1000003 * x) & mask ^ Hash.ordinal(c)

       x ^= length & mask

       # Convert to C long type
       x = ctypes.c_long(x).value

       if x == -1:
           x = -2

       return x

其实上述代码只是进行了这样的过程:

mask = 0xffffffffffffffff

1,x = (Hash.ordinal(value[0]) << 7) & mask

2,重复 len(value) 次:x = (1000003 * x) & mask ^ Hash.ordinal(value[0])

3,x ^= length & mask

所以我们可以整一下Meet-in-the-middle:正算三轮的结果存成一个表,逆算四轮的结果去匹配一下,如果匹配上了就说明整对了

逆算的操作如下:

x = (x ^ Hash.ordinal(value[0]) * inv(1000003, mask+1)) & mask

最后算key的sha384值去异或密文c得到明文m即可

exp:

点击展开代码
from tqdm import *
from Crypto.Util.number import *
import hashlib
def attack(t):
    mask = 0xffffffffffffffff
    table = {}
    for v0 in trange(256):
        x0 = (v0 << 7) & mask
        x0 = (1000003 * x0) & mask ^ v0
        for v1 in range(256):
            x1 = x0
            x1 = (1000003 * x1) & mask ^ v1
            for v2 in range(256):
                x2 = x1
                x2 = (1000003 * x2) & mask ^ v2
                table[x2] = v0*256*256+v1*256+v2
    
    inv=inverse(1000003,mask+1)
    t=t^7
    for v0 in trange(256):
        x= ((t^v0)*inv) & mask
        for v1 in range(256):
            x1 = x
            x1 = ((x1^v1)*inv) & mask
            for v2 in range(256):
                x2 = x1
                x2 = ((x2^v2)*inv) & mask
                for v3 in range(256):
                    x3 = x2
                    x3 = ((x3^v3)*inv) & mask
                    try:
                        return (table[x3],v3,v2,v1,v0)
                        
                    except:
                        continue

t = 7457312583301101235
keys = attack(t)
key = b''
for i in keys:
    key += long_to_bytes(i)
print(key)
c = 13903983817893117249931704406959869971132956255130487015289848690577655239262013033618370827749581909492660806312017
import binascii
key = int(hashlib.sha384(binascii.hexlify(key)).hexdigest(), 16)
print(long_to_bytes(c ^ key))
"""
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 256/256 [00:06<00:00, 39.78it/s] 
 32%|████████████████████████████████████████▋                                                                                      | 82/256 [11:17<23:56,  8.26s/it] 
b']\x8c\xf0?Z\x08R'
b'flag{bdb537aa-87ef-4e95-bea4-2f79259bdd07}'
"""

2,Lattice#

这个方法还是听鸡块师傅才知道的。

image-20240519235534408

不过按自己的理解去造了下,没出结果(后面听别的佬说有类似的题,但这周没空接着整了,有空就接着写这部分)

2024/06/06更新

因为有别的师傅找我一块整这题的格,所以就接着整了

然后发现:其实我当时的想法是对的,但有个地方理解错了而已(傻了当时)

造格的思路如下:

先定义一下key:

key=2566v0+2565v1+2564v2+2563v3+2562v4+256v5+v6key={256}^6*v0 + {256}^5*v1 + {256}^4*v2 + {256}^3*v3 + {256}^2*v4 + {256}*v5 + v6

因为异或就是加减256以内的一个数,所以我们这里假设:(ax)v=ax+b,b[255,255](a*x)\oplus v=a*x+b,b\in[-255,255]

然后把hash源码转化成下面这样的多项式:

Hash(key)7=(128a7+a6)b0+a5b1+a4b2+a3b3+a2b4+av5+b6 mod 264Hash(key)\oplus 7=(128a^7 + a^6)b_0 + a^5b_1 + a^4b_2 + a^3b_3 + a^2b_4 + av_5 + b_6~mod~2^{64}

于是,我们便有这样的格:

(b0,b1,,b6,1,k)(1000128a7+a60100a5001010001(Hash(key)7)0000264)=(b0,b1,,b6,1,0)\begin{pmatrix}b_0,b_1,\cdots,b_6,1,k\end{pmatrix}\begin{pmatrix}1&0&\cdots&0&0&128a^7+a^6\\0&1&\cdots&0&0&a^5\\\vdots&\vdots&\ddots&\vdots&\vdots&\vdots\\0&0&\cdots&1&0&1\\0&0&\cdots&0&1&-(Hash(key)\oplus 7)\\0&0&\cdots&0&0&2^{64}\end{pmatrix}=\begin{pmatrix}b_0,b_1,\cdots,b_6,1,0\end{pmatrix}

对这个格进行调平,进行LLL,然后在这些结果中,找到末尾是 [1,0] 的那一组,便得到了(b0,b1,,b6)\begin{pmatrix}b_0,b_1,\cdots,b_6\end{pmatrix}

有了b后,我们回到刚刚假设的式子:

1000003xi1+b=xi=1000003xi1vi11000003x_{i-1}+b=x_{i}=1000003x_{i-1}\oplus v_{i-1}

因为我们根据这个式子,可以有这样的思路:

我们手上有:x7=Hash(key)7x_{7}=Hash(key)\oplus 71000003x6=x7b61000003x_{6}=x_{7}-b_6

所以有:

v6=(x7b6)x7v_{6}=(x_{7}-b_6)\oplus x_{7}

x6=(x7b6)10000031 mod 264x_6=(x_{7}-b_6)*{1000003}^{-1}~mod~2^{64}

那么依次类推,我们便有这样的循环:

vi1=(xibi1)xiv_{i-1}=(x_{i}-b_{i-1})\oplus x_{i}

xi1=(xibi1)10000031 mod 264x_{i-1}=(x_{i}-b_{i-1})*{1000003}^{-1}~mod~2^{64}

于是我们可以根据上述式子,逆着循环7次就能还原出key里的所有字符(每次都要记得更新每次所需要的值

最后跟前面一样——算key的sha384值去异或密文c得到明文m即可

exp:

点击展开代码
# sage10.3
from Crypto.Util.number import *
from gmpy2 import *
import hashlib, binascii

# 计算多项式的系数
mask = 0xffffffffffffffff
PR.<v0,v1,v2,v3,v4,v5,v6> = PolynomialRing(ZZ)
x = v0*128
for c in [v0,v1,v2,v3,v4,v5,v6]:
    x = 1000003 * x+c
coe = x.coefficients()

#造格
t = (7457312583301101235^^7)&mask
M = identity_matrix(ZZ, 9)
bel=2^200
for i in range(7):
    M[i, -1]=coe[i]*bel
M[-2, -2] = 1
M[-1, -1] = 2**64*bel
M[-2, -1] = -t*bel

'''
调平这里,其实直接调出矩阵的对应部分乘上2**20即可:
M[:,-1:] *= 2^200
'''
res = M.LLL()[:-1]
for i in res:
    if i[-1] == 0 and i[-2]==1:
        res = i[:-2]

# 还原key
a1 = invert(1000003, 2**64)
key = b''
for i in res[::-1]:
    xa = (t-i)%(2^64)
    x = t^^xa
    key += long_to_bytes(x)
    t = (xa * a1)%(2**64)
print(key)
c = 13903983817893117249931704406959869971132956255130487015289848690577655239262013033618370827749581909492660806312017
m = int(hashlib.sha384(binascii.hexlify(key[::-1])).hexdigest(), 16) ^^ c
print(long_to_bytes(m))
# flag{bdb537aa-87ef-4e95-bea4-2f79259bdd07}
CISCN2024-Crypto
https://shinichicun.top/posts/ciscn2024-crypto/
Author
Shin
Published at
2024-05-19